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1. Introduction

Industrial system management requires implementation of vari-
ous operational activities. The crucial tasks in which the role of eco-
nomic optimization will increase include maintaining the operation 
system as well as the replacement of technical objects. Maintenance 
and replacement are not only technical issues but also an economic 
problem. Maintenance strategy is focused mostly on preventive main-
tenance mainly in the area of operational research and management 
studies. Age replacement strategy for technical objects implies pre-
ventive replacement of the object when it reaches age T or corrective 
(failure) replacement before it reaches age T. Preventive replacements 
are less expansive and cheaper than the corrective ones. It is known 
that the time of preventive replacement is usually shorter than the 
time of corrective replacement. Fundamental facts for age replace-
ments are included in papers [2, 3]. A review of results connected 
with preventive replacements is to be found in papers [5, 21, 24]. Cer-
tain generalizations of the question of preventive replacements were 
arrived at in papers [12, 13]. Much later, methods of preventive re-
placements for multistate systems were analyzed. Testing multistate 
systems was introduced in [14-19, 25-26]. The article [7] uses fuzzy 
variables (fuzzy sets), while paper [22] examines multistate systems 
with components requiring minimal repair. Using simulation methods 
for testing preventive renewals was presented in paper [20]. This pa-
per examines operation systems in which the technical object may at a 
given moment appear in one of the n states. For such systems optimal 

preventive replacements basing on the criteria function expressing the 
profit per time unit or availability coefficient. The structure of crite-
ria function is based on the values of semi-Markov process [6, 9], as 
opposed to the classic approach based on the theory of renewal. The 
most quoted work in defining the criteria function based on the ele-
ments of renewal theory is paper [23]. The paper includes an analysis 
of sufficient conditions for existing of maximum profit per time unit 
and maximum asymptotic coefficient of availability of n-state opera-
tion system. Values of criteria function depend on the lifetime distri-
bution, the mean value of preventive replacement time, mean repair 
time value, mean values of  remaining at other states, profits per time 
unit, transition probability matrixes embedded in the semi-Markov 
process of Markov chain.    

In Chapter 2, the basic markings and assumptions used in the pa-
per were presented. In Chapter 3 a model of technical object operation 
was prepared and the criteria function defining the profit per time unit 
at infinite time horizon was created.  The crucial goal of this chapter 
is to introduce into the research criteria function in matrix form. In 
Chapter 4 sufficient conditions for occurrence of maximum profit per 
unit are analyzed, as well as asymptotic availability factor. Conditions 
for occurrence of extreme criteria function were formulated for the 
class of distributions with increasing failure rate function (IFR) as 
well as for a wider class introduced by one of the authors of the class 
(MTFR). Numerical example of the optimization of the maintenance 
system was analyzed in Chapter 5. In the example it was asserted that 
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Wymiany prewencyjne stosuje się w celu podnoszenia gotowości systemów eksploatacji maszyn i wzrostu dochodu na jednostkę 
czasu systemu eksploatacji. W pracy analizuje się model wymian obiektów technicznych według wieku dla n-stanowego systemu. 
Funkcja kryterialna stosowana w pracy wyraża zysk przypadający na jednostkę czasu lub współczynnik gotowości. Zakłada się, 
że rozkład prawdopodobieństwa czasu do uszkodzenia obiektu technicznego jest znany i strategia wymian prewencyjnych będzie 
stosowana na długim przedziale czasowym. Bada się problem maksymalizacji zysku na jednostkę czasu i współczynnika gotowo-
ści dla rosnącej funkcji intensywności uszkodzeń lub funkcji intensywności z szerszej klasy. Celem tej pracy jest sformułowanie 
warunków, przy których zysk na jednostkę czasu osiąga maksimum. W pracy pokazano, że badaną funkcję kryterialną (zysk na 
jednostkę czasu lub współczynnik gotowości) można wyrazić za pomocą metod rachunku macierzowego. Na końcu pracy przed-
stawiono przykład numeryczny oceny optymalnego wieku wymiany dla rzeczywistego procesu eksploatacji.

Słowa kluczowe: utrzymanie, wymiana prewencyjna, zysk na jednostkę czasu, gotowość, rozkład czasu życia, 
funkcja intensywności uszkodzeń, klasa IFR, klasa MTFR.
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the lifetime of technological object has Weibull distribution. Data for 
this example were obtained from an existing municipal bus operation 
process. 

2. Markings and assumptions included in the paper 

The paper will examine semi-Markov model of preventive age 
replacement. An n-state semi-Markov process X(t) is considered with 
the space of states S = {1, 2, …, n}. If X(t) = i, then the considered 
technical object at moment t is at state i. It is asserted that 1 is the 
state of failure-free functioning, 2 is the state of repair, n is the state of 
preventive replacement, while remaining states i, where 2 ≤ i ≤ n –1 
are other states of system maintenance. 

By zi, i = 1, 2, …, n, profit per unit is marked per state i. The paper 
assumes that z1 > 0, zi ≤ 0 for 2 ≤ i ≤ n. If the technical object is in 
state 1, it brings profit, while if technical object is in state i, where 2 ≤ 
i ≤ n, then technological object generates loss. 

It is assumed that τ τ τ τ0 1 2< < < < <... ...k  are leap moments and 

vk k k< − −τ τ 1  for 01, 0k v≥ =  are times of remaining at states of 

process X(t). The semi-Markov process is fully defined if the initial 
distribution is known:

 ( ){ } ( )00 , 1,2,...,iP X i p i n= = =

and its semi-Markov kernel defined by matrix: 

 ( ) ( ) , , 1,2,..., ,ijQ t Q t i j n = = 

where:

 ( ) ( ) ( ){ }1 1, , , 1,2,...,ij k k k kQ t P X j t X i i j nτ τ τ τ+ += = − < = =

Sequence X k Nkτ( ) ∈,  of random variables is Markov chain 

with transition probability matrix:

( ) , 1,2,...,ij ijP p Q for i j n   = = ∞ =   

is called embedded Markov chain. Random variables Ti, i = 1, 2, …, 
n stand for times of remaining in the state and have distribution func-
tions in the form of:

 F t P T t P t X ji i k k k( ) = <{ } = − < ( ) ={ }+τ τ τ1

or otherwise:

 ( ) ( )
1

, 1,2,...,
n

i ij
j

F t Q t i n
=

= =∑ . (1)

Distribution function of remaining at state i, before moving to  
state j, is defined as follows:

F t P t X j X i for i jij k k k k( ) = − < ( ) = ( ) =











=+ +τ τ τ τ1 1 1 2, , , , ,...., ,n k N∈ .

(2)

For distribution function ( )1iF x  defined by formula (2) it is as-

sumed that ( ) ( )1 1iF x F x=  exists for i = 2, 3, 4, …, n. While con-

structing criteria function, the limit theorem is used for finite semi-
Markov processes [6, 8]. It is assumed that mean values ETi, i = 1, 2, 

…, n are finite, positive and Markov chain ( ), 0,1,2,...kX kτ = , has 

one ergodic class. These assumptions allow one to formulate limit 
theorem of the form:

lim { ( ) } lim { ( ) | (0) } 1,2,...,j
t t

P P X t j P X t j X i for i n
→∞ →∞

= = = = = = ,

where:

 
*

*

1

j j
j n

k k
k

p ET
P

p ET
=

=

∑
, (3)

where * , 0,1,2,...,jp j n=  is a limit distribution of embedded Mark-

ov chain X kτ( ) , where k N∈  with transition probability matrix 

ijP p =   , where ( ), , 0,1,2,...,ij ijp Q i j n= ∞ = . Limit probabili-

ties * , 0,1,2,...,jp j n=  are a solution for a system of linear equa-

tions:

* *

1

n
i ij j

i
p p p

=
=∑  with condition *

1
1

n
i

i
p

=
=∑ , where i, j = 1, 2, …, n.

3. Criteria function

Let X(t) be semi-Markov process with continuous kernel Q(t). 
The counting process is defined:

 ( )
0

{ ( ) }
t

jK t I X u j du= =∫ ,

Where I is an indicator determined as follows:

 
( ){ } 1 ( ) ,

0 ( ) .
for X u j

I X u j
for X u j

=
= =  ≠

It is total time of remaining of process X(t) at state i as well as in 
interval [0, t]. The value:

( )
1

( )
n

i i
i

L t z EK t
=

= ∑

is the expected profit per time unit in interval [0, t]. The limit:

( )lim
t

L tL
t→∞

=

is the expected profit per time unit for infinite time interval. The limit 
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is the basis for building criteria function. From the definition of the 
process Kj(t), j = 1, 2, …,  n, it is:

 
( )

lim ,j
j

t

EK t
P

t→∞
=  j=1, 2, …, n,

thus:

 
1

.
n

i i
i

L z P
=

= ∑

According to (3) the following is true:

 

*

1

*

1

.

n
i i i

i
n

i i
i

z p ET
L

p ET

=

=

=
∑

∑
 (4)

The unit is replacement at age T or when it failed, whichever comes 
first. T1(x) defines the time of replacement or failure. Variable T1(x) 
may be written as:

 
( ) 1 1

1
1

, ,
, .

T if T x
T x

x if T x
<

=  ≥
 (5)

Using formula (5), a semi-Markov process is obtained with transition 
probability matrix P(x) of embedded Markov chain. Elements of the 
first verse of matrix P(x) depend on x. For p1n(x) is:

 p1n(x) = P{X(τ k+1) = n | X(τk) = 1} =
 P{X(τ k+1) = n | X(τk) = 1, T1< x} P{T1 < x | X(τ k) = 1} +
 P{X(τ k+1) = n | X(τk) = 1, T1 ≥ x} P{T1 ≥ x | X(τ k) = 1}.

For (5), the following is true: 

 P {X(τ k+1) = n | X(τk) = 1, T1 ≥ x} = 1.

Using qualities of conditional probability, the following is obtained:

 P{X(τ k+1) = n | X(τk) = 1, T1< x}

P{X(τ k+1) = n, T1< x | X(τ k) = 1}/ P{T1 < x | X(τ k) = 1} = Q1n(x) / 
F1(x),

thus:

 p1n(x) = Q1n(x) + R1(x) , where R1(x) = 1 – F1(x).

For (2), the following is true:

 p1n(x) = p1nF1n(x) + R1(x).

Similarly, for probability p1i(x) where 2 ≤ i ≤ n – 1, the following is 
true:

p1i(x) = P{X(τ k+1) = i | X(τk) = 1} =
 P{X(τ k+1) = i | X(τk) = 1, T1< x} P{T1 < x | X(τ k) = 1} +

 P{X(τ k+1) = i | X(τk) = 1, T1 ≥ x} P{T1 ≥ x | X(τ k) = 1}.

Definition (5) concludes in:

 P{X(τ k+1) = i | X(τ k) = 1, T1 ≥ x} = 0,

which results in:

 P{X(τ k+1) = i | X(τ k) = 1, T1< x} = Q1i (x) / F1(x)

as well as:

 p1i(x) = Q1i(x) = p1iF1i(x) for i = 2, 3, …, n –1.

Now, the matrix P(x) of transition probabilities is as follows: 

( )

12 12 13 13 1 1 1

21 23 2

31 32 3

1 2 3

0 ( ) ( ) ... ( ) ( )
0 ...

0 ...
... ... ... ... ...

... 0

n n

n

n

n n n

p F x p F x p F x R x
p p p
p p pP x

p p p

+ 
 
 
 =
 
 
  

.

On the basis of (4), criteria function may be written in the form:

 ( )
* *

1 1 1
2

* *
1 1

2

( ) ( ) ( )

( ) ( ) ( )

n
i i i

i
n

i i
i

ET x z p x ET z p x
g x

ET x p x ET p x

=

=

+
=

+

∑

∑
, (6)

where pi
*(x), i = 1, 2, …, n are limit probabilities of Markov chain 

with transition matrix P(x), while ET1(x) is the value of mean random 
variable T1(x). Mean value ET1(x) is calculated from the formula:

 ( )1 1 1
0

( ) { }
x

ET x dF t xP T x= + ≥∫ .

Integration by parts results in:

 ( )1 1
0

( )
x

ET x R t dt= ∫ . (7)

Limit probabilities pi
*(x), i = 1, 2, …, n meet the following system 

of linear equations:

 

*
121 31 1
*

12 12 32 2 2
*13 13 23 3 3

*1 1 2 3

( )1 ... 0
( ) 1 ... ( ) 0
( ) 1 ... 0( )

... ... ... ... ... ......
( ) ( ) ... 1 0( )

n

n

n

n n n n
n

p xp p p
p F x p p p x
p F x p p p x

p F x R x p p p x

 −        −       − =            + −       

.     (8)

The system of equations is homogenous and has infinite number of 
solutions. Replacing the last equation of system (8) with normalization 
condition of the form:

 *

1
( ) 1

n
i

i
p x

=
=∑ , (9)
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the system of linear equations has the form:

 

*
121 31 1
*
212 12 32 2
*13 13 31 3 3

*

( )1 ... 0
( )( ) 1 ... 0

( ) 1 ... 0( )
... ... ... ... ... ......
1 1 1 ... 1 1( )

n

n

n

n

p xp p p
p xp F x p p

p F x p p p x

p x

 −        −       =−                  

. (10)

The ui(x) marks algebraic completion of i-th one in n-th verse of 
the matrix of the equation system (10). Taking into consideration the 
right side of the system (10), the solution of the system has the form 
pi

*(x) = ui(x) / W(x) where W(x) is the determinant of the system (10). 
Embedding ui(x) in formula (6) instead of pi

*(x), the criteria function 
(6) does not change its value. From determinant value, the numerator 
of criteria function (6) may be written as:

  ( )

21 31 1

12 32 2

13 23 31 2

1 1 2 2 3 3

1 ...
( ) 1 ...
( ) 1 ...; , ,...,

... ... ... ... ...
( ) ...

n

n

nn

n n

p p p
p x p p
p x p pL x z z z

z ET x z ET z ET z ET

−
−

−= .   (11)

Denominator M(x) of criteria function (6) is expressed as: M(x) = 
L(x; 1, 1, …, 1). For the formula (11), the following is true that the cri-
teria function (6) may now be written as coefficient of determinants 

 g(x) = L(x; z1, z2, …, zn) / L(x; 1, 1, …, 1). (12)

The latter equation is an important result of the work. Representa-
tion of criteria function g(x) in the form of (12) makes it possible to 
calculate the value of function without determining limit probabilities 
pi

*(x). In paper [9] the criteria function g(x) is expressed in the form 
(6). The A1 means algebraic completion of element z1ET1(x). It is 
known that A1 does not depend on x, z2, z3, …, zn. Di(x) denotes the 
algebraic completion of i-th one in matrix of equation system (10). 
Limit probability *( )ip x  is expressed by the formula:

 
*( ) ( ) / ( ), 1,2,...,i ip x D x W x i n= = , (13)

where W(x) is the indicator of the matrix of equation system (10). The 
matrix obtained from the matrix of the system (10) by crossing out the 
n-th verse and the n-th column has the dominant diagonal. In this case 
it means that the sum of the elements of each column, bypassing the 
element on the diagonal, is lower than 1. On the basis of the qualities 
of matrix [4] the sing of completion of element znETn  may be written 
in the form of (–1)n-1. On the basis of (13) it is concluded that the sign 
of the determinant W(x) is also equal to (–1)n-1. The determinant of 
completion D1(x) is the determinant from independent matrix from x, 
z1, z2, …, zn and the sign of this determinant equals (–1)n-1. The nu-
merator and the denominator of the criteria function g(x) given by the 
formula (13) is multiplied by W(x) (–1)n-1. Asserting that the above 
markings of the criteria function g(x) given in the formula (6) may be 
written in the form:

 
1 1

2

1
2

( ) ( )
( )

( ) ( )

n
i i i

i
n

i i
i

Az ET x z ET E x
g x

AET x ET E x

=

=

+
=

+

∑

∑
, (14)

where Ei(x) = Di(x) (–1)n-1, A = A1(–1)n-1. It is now known that for 
each x ≥ 0 is Ei(x) ≥ 0 and A ≥ 0. From the form of the matrix of equa-
tion system (10) it is concluded that Ei(x) is a linear function of the 
distribution function F1(x). There exist a continuous Gi i  Hi so that 
Ei(x) = GiF1(x) + Hi .  Embedding x = 0, it is concluded that Hi ≥ 0.

Assuming that:

1
2

n
i i i

i
B z ET G

=
= ∑ , 1

2

n
i i i

i
C z ET H

=
= ∑ , 

2

n
i i

i
B ET G

=
= ∑ , 

2

n
i i

i
C ET H

=
= ∑

  
(15)

the criteria function (14) may be written as:

 

1 1 1 1 1

1 1

( ) ( )( )
( ) ( )

Az ET x B F x Cg x
AET x BF x C

+ +
=

+ +
. (16)

It is easy to notice that g(0) = C1 / C ≤ 0 as well as g(∞) = (A z1ET1 + 
B1 + C1) / (A ET1 + B +C).

4. Sufficient conditions for existing of maximum criteria 
function 

In this subsection of the paper the sufficient conditions are formu-
lated for the occurrence of maximum criteria function assuming that 
the time to failure T1 is a random variable of the function of increasing 
failure rate λ1(t). This fact is written as follows: T1∈  IFR (Increasing 
Failure Rate). The second discussed distribution class is the class with 
unimodal failure rate included in MTFR (Mean Time to Failure or 
Repair) class. The qualities of MTFR class were examined in detail in 
papers [1, 10, 11]. Derivative g’(x) of criteria function is expressed by 
the formula: 

g’(x) = {A[B1 – Bz1][ET1(x)f1(x) – F1(x)R1(x)] + R1(x)A(Cz1 – C1) + 
f1(x)(B1C – BC1)}/M2(x),

where M(x) is the denominator in formula (16). In conclusion, the 
derivative g’(x) may be written as:

 g x
M x

A r x R x f x'( )
( )

( ( ) ( ) ( ) )= + +
1
2 1 1 1α β γ , (17)

where:

 

α

β

γ

= −( )
= −( )
= −

( ) = ( ) ( ) − ( )

A B Bz

A Cz C
B C BC

r x ET x f x F x R

1 1

1 1

1 1

1 1 1 1

,

,
,

11 x( ).

 (18)

At the beginning of Chapter 2 it was asserted that z1 > 0, zi ≤ 0 for 
2 ≤ i ≤ n. This assertion as well as formulas (15), (16), (17) and (18) 
allow one to formulate conclusions 1 and 2.

Conclusion 1. If z1 > 0, zi ≤ 0 , F1i(x) = F1(x) for i = 2, 3, 4, …, n, 
then inequality β > 0 is true.

Conclusion 2. If zi = zj for 2 ≤ i ≤ n, 2 ≤ j ≤ n, then γ = 0.

The theses of conclusions 1 and 2 are very useful while formulat-
ing criteria for occurrence of maximum availability rate (conclusions 
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7 and 8). Below it is assumed that the function of failure rate λ1(x) is 
continuous for t ≥ 0. 

Conclusion 3. If T1∈  IFR, β + γ f(0+) > 0, α < 0, γ < 0, Aα(ET1 

λ1(∞) – 1) + β + γλ1(∞) < 0, then the criteria function g(x) reaches 
exactly one maximum. 
Proof. It is assumed that λ1(∞) is the border of the function λ1(t) with 
t→∞ or upper limit of  function λ1(t) with t→∞. Let s(x) = αr(x) + β 
+ γλ1(x), where r(x) = λ1(t) ET1(x) – F(x). Formula (17) results in the 
mark of derivative g’(x) is the same as the mark of function s(x). The 
assumptions α < 0, i γ < 0 result in the function s(x) is continuous and 
decreasing from s(0) = β + γf1(0+) to s(∞) = Aα(ET1 λ1(∞) – 1) + β + 
γλ1(∞). If s(0) > 0 and s(∞) < 0, there exists exactly one x0 so that s(x0) 
= 0 and g’(x0) = 0. Thus g(x) reaches one maximum. 

Conclusion 4. If T1∈  IFR, α < 0, β + γ f1(0+) < 0, λ1(∞) = ∞, then 
the criteria function g(x) reaches exactly one maximum. 

Proof .  If λ1(∞) = ∞, then s(∞) < 0. Conclusion 3 results in the fact 
that criteria function g(x) reaches exactly one maximum. 

Conclusion 4 results in the following conclusion:

Conclusion 5. If T1∈ IFR, α < 0, f1(0+) = 0, λ1(∞) = ∞, then the 
criteria function g(x) reaches exactly one maximum. 

Conclusions 3, 4 and 5 include sufficient conditions for occur-
rence of maximum function g(x) for distributions of times to failure 
from IFR class. Below, conditions for existing of maximum for MTFR 
class are formulated.

Defini t ion.  Random variable T1 ∈  MTFR, if r1(x) ≥ 0 for every 
x ≥ 0.

MTFR class includes certain random variables with unimodal failure 
rate functions.  

Conclusion 6. Let the time to failure T1 have a distribution with 
unimodal failure rate function λ1(t). The equality T1∈MTFR is true 
only when ET1 λ1(∞) ≥ 1.
Replacing z1 = 1, z2 = 0, z3 = 0 ,…, zn = 0, the criteria function g(x) 
expresses asymptotic availability coefficient. For the availability 
coefficient g(0) = 0 as well as g(∞) = A ET1 / (A ET1 + B + C).

Conclusion 7. If T1∈  IFR, α < 0, λ1(∞) > (1 – α/β) / ET1, then the 
availability coefficient reaches maximum value. 
Proof. It is known on the basis of conclusion 2 that for availability 
coefficient γ = 0. It results from the fact that function s(x) = α r(x) 
+ β decreases from s(0) = β > 0 to s(∞) = α (ET1 λ1(∞) – 1) + β < 0. 
Function s(x) changes the mark  from „+” to „–” exactly once.

Conclusion 8. If T1∈MTFR, α < 0, λ(t) is unimodal, λ1(∞) > (1 – 
α/β) / ET1, then availability coefficient g(x) reaches maximum value. 

Proof .  Derivative of function s(t) equals s’(t) = λ’1(x) [α ET1(x) + 
γ]. If it results from the fact that function λ1(t) is unimodal, then the 
function s(t) is also unimodal. Paper [9] shows that unimodal nature 
of function s(x) may be proven without asserting differentiability of 
function λ1(t). In order for function s(t) to have precisely single zero 
position it is enough for the following inequalities to be true s(0) = 
β > 0 and s(∞) < 0. Condition s(∞) < 0 is equivalent to condition 
λ1(∞) > (1 – α/β) / ET1.

5. Numeric example 

In this chapter, numeric example illustrating results obtained in 
chapters 3 and 4 are analyzed. An 8-state process of municipal buses 
operation process is discussed. The following states have been singled 
out: 

S1 – completion of transport task,
S2 – repair after failure,
S3 – preventive replacement (repair),
S4 – condition control after repair,
S5 – fuel delivery,
S6 – service on working day,
S7 – periodic technical service,
S8 – stoppage at depot parking space.

It is asserted that time to failure has Weibull distribution with reli-
ability function: R1(t) = exp(–(t/a)c) for a, c > 0, t ≥ 0. Rate function 
for this distribution has the form: λ1(t) = (c/a) (x/a)c-1, t ≥ 0. Based 
on the statistic analysis of the data from operation for mean values 
of remaining at states, the following ratings were obtained: ET1 = 
8.852, ET2 = 3.619, ET3 = 1.501, ET4 = 0.164, ET5 = 0.096, ET6 = 
0.122, ET7 = 3.885, ET8 = 5.659. Unit profits resulting from work-
ing at states of the system were rated as: z1 = 4, z2 = – 2, z3 = – 0.2, 
z4 = – 0.2, z5 = – 0.2, z6 = – 0.2, z7 = – 0.2, z8 = – 1. The rating of 
transition probability matrix for Markov chain embedded in the proc-
ess is the following:

P =

0 0.239 0.104 0 0.657 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

0.277 0 0 0 0.723 0 0 0
0 0 0 0 0 0.982 0.178 0
0 0 0 0 0 0 0 1

0.234 0 0 0 0 0 0 0.766
1 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

Values of factors A, B, B1, C and C1 were calculated using the 
unmarked factor method. For the values of parameters given above it 
was calculated: α = – 5.778, β = 2.400, γ = – 4.133. For every c∈ {2, 
2.5, 3, 3.5} the value of parameter b was calculated so that ET1 = 8.852. 
Figure 1 presents charts of profit function per time unit depending on 
the moment of preventive replacement (repair). Each of the four com-
pletions of criteria function reach maximum value. 

6. Conclusions

The paper discusses the issue of age replacement of technical ob-
jects for multi-state operation systems. The criteria function examined 
in this paper is the profit per time unit and availability coefficient. 
The first of the objectives of the article was the matrix representation 
of the criteria function (formula (12)), while the second was to show 

Fig. 1. Graphs of the criteria function g(x) for c {2, 2.5, 3, 3.5}
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how, with certain general assumptions, it was possible to formulate 
sufficient conditions for occurrence of the maximum of the criteria 
function.
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